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ABSTRACT

We describe a new heap data structure, the thin heap, which is closely related to the
Fibonacci heap and has the same asymptotic performance. Specifically, create, insert,
find-min, decrease-key, and meld take O(1) amortized time, and delete-min and delete
take O(logn) amortized time. The advantage of thin heaps over Fibonacci heaps is
that the heap-ordered trees being maintained have more structure and require fewer
fields per node, but the operations are as simple as for Fibonacci heaps. In a practical
implementation, the time and space constant factors of thin heaps should thus be better

than those of Fibonacci heaps.
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A heap (or priority queue) is an abstract data structure consisting of a set of items, each with
a real-valued key, subject to the following operations:
create: Return a new, empty heap.
insert(xz,h): Insert a new item z, with predefined key, into heap h.
find-min(h): Return an item in heap h of minimum key. This operation does not change h.
delete-min(h): Delete an item from heap h of minimum key and return it.
meld(hi, he): Return the heap formed by taking the union of the item-disjoint heaps hq and ho,
destroying h; and hy.

decrease-key(A, z, h): Decrease the key of item z in heap h by subtracting the nonnegative real
number A. This operation assumes that the position of z in h is known.

delete(z,h): Delete item z from heap h. This operation assumes that the position of z in h is
known.

Vuillemin [7] invented a class of heaps, called binomial queues, that support all the heap oper-
ations in O(logn) worst-case time. Subsequently, Fredman and Tarjan [3] invented a relaxation of
binomial queues called Fibonacci heaps, which support create, insert, find-min, meld, and decrease-
key in O(1) amortized time, and delete-min and delete in O(logn) amortized time. Fibonacci heaps
allow an optimal implementation of Dijkstra’s shortest path algorithm and are useful in many other
algorithms. (See [3].)

A Fibonacci heap is a collection of item-disjoint heap-ordered trees. The definition of a Fibonacci
heap does not impose any explicit constraint on the structure of the trees; the only constraint is
implicit in the way the trees are manipulated. In a Fibonacci heap each node requires four pointers:
one to its parent, one to its leftmost child, and one each to its left and right siblings. In addition,
each node requires an integer rank and a mark bit. Although theoretically efficient, there is some
evidence that Fibonacci heaps do not perform quite as well as other heap structures in practice [2].

We present a new class of heaps that we call thin heaps. Thin heaps satisfy the same amortized
time bound for each operation as Fibonacci heaps. The main advantage that thin heaps offer
is the elimination of one pointer and the mark bit from the nodes, without complicating any
operation. Another advantage of thin heaps is that the trees being maintained have an explicit

binomial structure. Therefore we expect thin heaps to have better time and space constant factors



in practice than Fibonacci heaps.

For any integer k > 0, the binomial tree of rank k, denoted by By, is defined as follows. A
binomial tree of rank zero is a single node. For any k > 0, a binomial tree of rank k is obtained by
linking two binomial trees of rank k — 1 so that the root of one becomes the leftmost child of the
root of the other. The rank of a node z in a binomial tree is defined to be the rank of the binomial
subtree rooted at z, which is equal to the number of children of z.

A thin tree is a binomial tree in which each nonroot node may optionally have lost its leftmost
child (and attached subtree). More formally (and more accurately), we define a thin tree to be an

ordered tree, each of whose nodes has a non-negative integer rank, with the following properties:

(i) a rank-r node either has r children of ranks r — 1, 7 — 2, ..., 0 from leftmost to rightmost
(we call such a node thick) or has r — 1 children, of ranks r — 2, 7 — 3, ..., 0 from leftmost to

rightmost (we call such a node thin);

(ii) the root is thick.

Observe that if we link two thin trees whose roots have equal rank by making one root the new
leftmost child of the other root and adding one to the rank of the single remaining root, then the
result is a thin tree.

A thin heap is a set of node-disjoint heap-ordered thin trees. By heap-ordered we mean that
each node has an associated real-valued key, and the keys obey heap order: every child has key no

smaller than that of its parent. We represent a thin heap using the following information:

(a) a singly-linked circular list of the tree roots, with a root of minimum key first;
(b) for each node, a doubly-linked list of its children;
(c) for each leftmost child, its parent;

(d) for each node, its rank.

To store this information, an integer (the rank) and three pointers per node suffice: one to the
leftmost child; one to the right sibling, or next root if the node is a root; one to the left sibling, or

parent if the node is a first child.



A node is thick if and only if its rank is one greater than that of its leftmost child. A node is a
root if and only if its left sibling/parent pointer is null. A node is a leftmost child if and only if it
is the leftmost child of the node indicated by its left sibling/parent pointer.

We perform the various heap operations on thin heaps as follows. The implementation of create,
insert, find-min, meld, and delete-min is exactly as for Fibonacci heaps. Specifically, to perform
create, return a null pointer. To perform insert(z, h), create a new one-node thin tree from z and
insert z into the root list of A, in first or second position depending on whether its key is smaller
than the key of the old first root or not. To perform find-min(h), return the first root of h. To
perform meld(h,, ha), combine the root lists of hy and ks into a single list, whose first root is either
the first root of h; or the first root of hy, whichever has smaller key (breaking a tie arbitrarily).

To perform delete-min(h), remove from h the first root, say z, and make thick each child of =
that is thin by decreasing its rank by one. Then combine the list of children of z with the list of
roots of h other than z and repeat the following linking step until it no longer applies: find any
two trees whose roots have equal rank and link them by making the root with larger key the new
leftmost child of the root of smaller key (breaking a tie arbitrarily) and increasing the rank of the
new root by one. Once there are no two trees with roots of equal rank, form a list of the remaining
roots, in the process finding a root of minimum key to be the first root of the new heap. Finally,
return z. To find links to perform in O(1) time per link, we can use a temporary array indexed by
rank to store tree roots. See [3]. We can avoid the use of random-access memory and implement
delete-min (and all the other operations) on a pointer machine by having each node of rank k point
to a global rank node for rank k, and having the rank node for k point to the rank nodes for & + 1
and k — 1. We leave the details as an exercise.

The implementations of decrease-key and delete differ from their implementations for Fibonacci
heaps. In a Fibonacci heap, a decrease-key operation can cause a sequence of cascading cuts, in
which successive nodes along a path of ancestors are detached from their parents. Thin heaps use
a related but different sequence of cuts, possibly with some intervening rank reductions.

We perform decrease-key(A, z, h) as follows. Subtract A from the key of z. If z is a root, make
it the first root of A if its key is now smaller than that of the old first root of h, completing the

decrease-key operation. If, on the other hand, z is not a root, let y be the left sibling of z, or the



parent of z if z has no left sibling. Remove z (and its attached subtree) from the list of children
containing it, making it a new tree root. Make z thick if it is thin, and add z to the list of roots,
as the first or second root depending on whether its key is less than that of the old first root.
Moving z and its attached subtree may create a violation of the rank rule (i). Specifically, if
x was previously the right sibling of y, the new right sibling of y will have a rank two less than
that of y (or y will have rank one and no right sibling). We call this a sibling violation at y. If
z was previously the leftmost child of y and y was previously thin, ¥ will now have a rank three
greater than that of its new leftmost child (or have rank 2 and no children). We call this a child
violation at y. We repeat the following step, which will repair the violation at y but may create a

new violation at the left sibling or parent of y, until there is no violation:

Case 1 (sibling violation): Node y has rank two greater than that of its right sibling, or rank one

and no right sibling.

Case la (node y is thick): Remove the leftmost child of y, say w, and its attached subtree,
and insert w after y in the list of children containing y, making w the new right sibling
of y. Since y was originally thick, w has rank one less than the rank of y, and this repairs

the violation while making y thin. This case is terminating.

Case 1b (node y is thin): Decrease the rank of y by one, repairing the violation at y and
making y thick. Replace y by its left sibling if it has one, or its parent if not. This case

is possibly non-terminating.

Case 2 (child violation): Decrease the rank of y by two, repairing the violation and making y
thick. If y is a non-root, proceed as follows. Let z be the left sibling of y, or its parent if it
has no left sibling. Remove y (and its attached subtree) from the list of children containing
it, and add y to the list of tree roots as the new second root. Replace y by z. This case is

possibly non-terminating.

It is straightforward to verify that decrease-key produces a valid thin heap.
The last heap operation, delete(z,h), we perform by executing decrease-key(oo, x, h) followed

by delete-min(h).



The analysis of thin heaps is essentially the same as the analysis of Fibonacci heaps. It uses
the potential function technique [6]. We assign to each possible collection of heaps an integer called
the potential of the heaps. This number equals the number of trees plus twice the number of thin
nodes. The amortized time of a heap operation is defined to be its actual running time plus the
net increase in the potential caused by the operation. With this definition, the total actual time of
a sequence of heap operations, sta,rting‘with no heaps, is at most the sum of the amortized times
of the operations [6)].

Both the actual and the amortized times of find-min, insert, and meld are obviously O(1): an
insertion increases the number of trees by one; the other operations do not affect the number of
trees. If we charge one unit of time for each linking step, then the amortized time of the delete-min
operation is no greater than the maximum rank of any node in the heap, because each linking step
reduces the potential by one. The following lemma shows that every thin binomial tree has size
exponential in the rank of its root. This implies that the amortized time of delete-min on an n-item

heap is O(logn).

Lemma 1. A node of rank k in a thin tree has at least Fy, > ¢*~! descendants, including itself,
where Fy, is the k™ Fibonacci number, defined by Fy =1, Fy = 1, Fp = Fx_o+ Fy_1 for k> 2, and
¢ = (1 ++/5)/2 is the golden ratio.

Proof. The inequality Fy > ¢F~! is well-known [5]. We prove by induction on & that a node of
rank £ in a thin tree has at least Fj descendants. This is obvious for K = 0 and k = 1. suppose
k > 2. Let z be a node of rank £ in a thin tree, and consider the subtree rooted at &, which is itself
a thin tree. Cutting the link between z and its leftmost child and decreasing the rank of = by one
produces two thin trees, one with a root of rank £ — 1, and one with a root of rank k — 1 or k — 2,
depending on whether  was thick or thin, respectively. By the induction hypothesis, the original

number of descendants of z is at least Fy_1 + min{Fy_1, Fy_o} > F}. O

To bound the amortized time of decrease-key, let us charge one unit of time for each iteration of
the violation-repair step. Each non-terminating iteration either makes a thin node thick, reducing
the potential by two, or makes a thin node thick and adds a new tree, reducing the potential by

one. Thus each non-terminating iteration takes at most zero amortized time. The remainder of



decrease-key, including the last iteration of the violation-repair step, takes O(1) amortized time,
giving a total amortized time bound for decrease-key of O(1). The amortized time of delete is
O(logn) since it is a decrease-key followed by a delete-min.

Thus we obtain the following theorem:

Theorem 2. Beginning with no thin heaps and performing an arbitrary sequence of heap operations,
the total time is at most the total amortized time if we charge each delete-min and delete O(log n)

amortized time and each other operation O(1) amortized time.

Remark. We note that the worst-case time of a decrease-key operation on a thin heap is
O(logn), in contrast to Fibonacci heaps, in which a decrease-key operation can take Q(n) time.
One can reduce the number of pointers per node in a thin heap from three to two at a cost of a
small constant factor in running time. See e.g. [1, pp. 306-308] Additional heap operations can be

accomodated in variants of Fibonacci heaps [3, 4]; thin heaps have corresponding variants.
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